Thalamocortical function in developing sensory circuits
نویسندگان
چکیده
منابع مشابه
Thalamocortical Circuits and Excitability.
Absence seizures (3–4 Hz) and sleep spindles (6–14 Hz) occur mostly during slow-wave sleep and have been hypothesized to involve the same corticothalamic network. However, the mechanism by which this network transforms from one form of activity to the other is not well understood. Here we examine this question using ferret lateral geniculate nucleus slices and stimulation of the corticothalamic...
متن کاملVisual thalamocortical circuits in parvalbumin-deficient mice.
The dorsal lateral geniculate nucleus (dLGN) is considered as the visual gateway to the visual cortex (VC) and sends collaterals to the thalamic reticular nucleus (RTN) that in turn receives collaterals of the corticofugal feedback projections. At all levels of this thalamocortical circuit there are GABAergic neurons expressing the calcium-buffer parvalbumin (PV). The present study reports for ...
متن کاملSensory Experience Restructures Thalamocortical Axons during Adulthood
The brain's capacity to rewire is thought to diminish with age. It is widely believed that development stabilizes the synapses from thalamus to cortex and that adult experience alters only synaptic connections between cortical neurons. Here we show that thalamocortical (TC) inputs themselves undergo massive plasticity in adults. We combined whole-cell recording from individual thalamocortical n...
متن کاملTargeted Deletion of Kcne2 Impairs HCN Channel Function in Mouse Thalamocortical Circuits
BACKGROUND Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate the pacemaking current, I(h), which regulates neuronal excitability, burst firing activity, rhythmogenesis, and synaptic integration. The physiological consequence of HCN activation depends on regulation of channel gating by endogenous modulators and stabilization of the channel complex formed by principal a...
متن کاملOptogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain
To regain sensorimotor functions after stroke, surviving neural circuits must reorganize and form new connections. Although the thalamus is critical for processing and relaying sensory information to the cortex, little is known about how stroke affects the structure and function of these connections, or whether a therapeutic approach targeting these circuits can improve recovery. Here we reveal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Opinion in Neurobiology
سال: 2018
ISSN: 0959-4388
DOI: 10.1016/j.conb.2018.04.019